

RIA Overview Summary

The RIA Strategic Initiative is focused on a billion dollar objective supporting scientific frontiers in Nuclear and Astro Physics with applications in stockpile stewardship, medicine, and industry **RIA Science** proton number supernovae burning burning **RIA RIA** Infrastructure **Project** neutron number

Introduction

- ➤ The process of turning an R&D program into a construction line item involves many interdependent actions. Most of these actions can be prioritized through a process of risk identification and evaluation
- Quickly learning the immediate technical issues for a complex system can be facilitated through the use of a risk assessment process
- ➤ For RIA the end results of this risk assessment process is a managed list of opportunities in the delivery of a major project. It helps us.....
 - ✓ Address Cost Issues Reinforce Cost Range
 - ✓ Clarify Design Focus Reinforce Contingency Estimates
 - ✓ Clarify Performance Objectives Solidify Technical Baseline

Methodology

- ➤ **Focus** on the Harrison Committee Cost Estimate and Physics Baseline from the 2nd RIA Driver workshop no updates or changes
 - ✓ RIA technology is documented in journal articles, conference proceedings, workshop briefings, etc......lends itself to a qualitative assessment tool such as Delphi Method
- Assess each major element of the RIA project against performance objectives. Answer the question "With no modification, can the technology described in the report deliver...."
 - √ 100 kW Beam Power with upgrade path to 400 kW?
 - √ 400 MeV per nucleon uranium?
 - ✓ Four energy regimes for experimentation?
- Use engineering judgment to assess consequence of technology success or failure in three baseline categories – Cost, Schedule and Technical performance
- ➤ Evaluate Risk based on likelihood of success with current technology and a "need" date driven by project objectives
- ➤ **Establish** priorities based on highest risk and nearest need date put the process and the results under configuration control

Initial Results

- ➤ 52 Items that represent threat or opportunity based on consequences with highest potential for impact in Cost, Schedule or Technical performance
- RIA Sub System Categories that Drive Threats and Opportunities
 - ✓ Beam Dynamics
 - ✓ Driver Linac
 - ✓ Lithium Production Target
 - √ Fragment Separator
- We already know these are significant areas of focus so additional perspective is needed
 - ✓ Need to translate the 2nd RIA Driver workshop physics baseline into an engineering baseline to find "holes"

Gaining Perspective

- Establish a team of experts from:
 - ✓ Physics Division
 - ✓ Advanced Photon Source
 - ✓ Nuclear Engineering, and
 - ✓ ANL West
- > Charge them to:
 - ✓ Translate the 2nd RIA Driver workshop physics description into physics parameters
 - ✓ Ensure the physics parameters are reflected in a non-site specific engineered layout
 - ✓ Verify the elements in the Harrison Committee cost estimate
 - ✓ Report on any holes
 - ✓ Do this in ~90 days Start June 14th

Pre-CDR engineering baseline schedule

Pre-CDR Engineering Baseline - Status

- ✓ Translate Physics Description into Physics parameters Done
- Turn Physics parameters into a non-site specific engineered layout –
 Done
- ☐ Verify Harrison Committee Cost Estimate Basis Not done yet
- □ Report on Harrison Committee baseline "Holes" from engineering perspective Not done yet

Engineering Layout of 2nd RIA Driver Workshop

- 400 MeV/u (uranium), up to 1 GeV proton
- CW SC Drift tube LINAC capable of accelerating 400kW beam
- 805 Mhz, elliptical cell design
- 2 Li targets
- 2 ISOL targets
- 12.125MHz RFQ and Hybrid RFQ
- 4 energy regimes for experiments
- ATLAS like post acceleration

Engineering Layout of 2nd RIA Driver Workshop

- Multi-charge state injector system
- Thin film strippers
- High energy portion of driver LINAC
- Fragment Separator and production targets
- Hybrid and 12.125 Mhz RFQ's
- Charge breeder concepts
- Baseline for Post Acceleration functional performance criteria
- RIA experimental equipment layouts

Color Legend:

Red = Highest Potential for project impact

Blue = Moderate Potential for project impact

Yellow = Lowest Potential for project impact

Green = No anticipated project impact

Results Summary

- When we combine the initial Risk Assessment results with the Engineering assessment we are able to:
 - ✓ Summarize the 52 risk and opportunity items
 - Six areas of highest consequence and near term "project need" date
 - High energy portion of driver linac
 - Concept supporting the interface of the fragment separator and high power beam dump
 - RFQ prototypes for post acceleration
 - Lithium / Uranium Carbide production target concept update
 - Thin film stripper concept update
 - Multi-charge state injector concept
 - ✓ Rank the risks and prioritize according to the projects ability to:
 - Accept the risk
 - Mitigate the risk such investments from the RIA R&D program, or
 - Avoid the risk through other means such as contracting mechanisms

Appendix B - Risk Assessment Summary Risk Summary Likelihood of What do we do about Comments and approach for Risk Retire Priority Cost Technical Schedule success / Risk Rating mitigation actions Date Rank failure Н М Н М Н М VL Н М Project Element Ac М х х х Front End **Driver Ion Source** 1. ECR / Venus Continue commissionina E.O. FY '04 Background operational system 2. Critical Beams R&D at all RIB facilities. E.O. FY '04 **Driver Front End** 3. 2-g LEBT Invest in RFQ prototyping effort CD-1 using 2004 LDRD or RIA 1 ProgrammaticR&D 4. RFQ Fab CD-1 LINAC х Resonators 5. DT Resonators Complete Prototypes in 2004 CD-1 6. Fast Tuners х х х Continue SBIR CD-1 2 Complete Prototypes under 7. Cryomodules ATLAS AIP funding. CDR Ellipticals Complete the prototype(s) and CDR 8. Beta 0.48 recommend the RIA R&D 9. Beta 0.6 CDR Program continues to focus on 9. Beta 0.8 improving life cycle operation of **CDR** Spoke Cavities RIA. 10. 3-spoke CDR Accept this risk if 4.2K operation is realistic. 11. Cryo/ Gradient analysis CDR Beam Dynamics 12. End-to-end mode Code is complete but significant 13. Errors / losses effort is required to ensure CD-1 2 Spoke vs. Elliptical mode application specific results. High CDR 15. Focus / Steering priority to continue in 2004. CD-1 16. Stripper requirement mode Facility Impacts Х Radiological Issues 17. Tunne No additional effort 18. Targets х recommended prior to CDR. 19. Soi Х 20. Inventory / Facility Class Х Multiple User Issues 33. RF Switching Isotope application workshop is 34. Breeder Options Х Х an important input to these R&D x x 3 Х issues which affect conventional 35. Isotope Harvesting х Х Х Х

36. Target Options

construction